Solutions Exam Analysis November 3, 2014

1. (a) Since A is bounded there exists M^{\prime} such that $|a| \leq M^{\prime}$ for all $a \in A$. (1 pt.).

Let $l \in L$. Take $\epsilon=1$ then there exists $a \in A$ such that $|l-a|<1$. (2 pt.)
Hence $|l|<|a|+1 \leq M^{\prime}+1=: M$, and thus L is bounded ($\mathbf{2} \mathbf{~ p t}$.)
(b) Take $\epsilon>0$. Since $c=\sup L$ there exists $l \in L$ such that $c-\frac{1}{2} \epsilon<l$. (2 pt.) Since $l \in L$ there exists $a \in A$ such that $|l-a|<\frac{1}{2} \epsilon$. (1 pt.)
Hence
$|c-a| \leq|c-l|+|l-a|<\frac{1}{2} \epsilon+\frac{1}{2} \epsilon=\epsilon$
Hence c is a limit point of A. ($\mathbf{2} \mathbf{p t}$.)
(c) Let $\epsilon>0$. Suppose there were infinitely many elements $x \in A$ with $x>c+\epsilon$. Then there would exist a limit point l of A (and thus $l \in L$) with $l \geq c+\epsilon$, which contradicts $c=\sup L$. ($\mathbf{3} \mathbf{~ p t}$.)
On the other hand, since $c=\sup L$ there exists an $l \in L$ such that $c-\frac{1}{2} \epsilon<l$.
Furthermore, since $l \in L$ there exist infinitely many $x \in A$ such that $|l-x|<\frac{1}{2} \epsilon$. It follows that there exist infinitely many $x \in A$ with $c<l+\frac{1}{2} \epsilon<x+\frac{1}{2} \epsilon+\frac{1}{2} \epsilon$, showing that there are infinitely many $x \in A$ with $x>c-\epsilon$. (2 pt.).
2. (a) Consider $x<y \in \mathbb{R}$ and let $x \neq 0$. Then there exists $t \in \mathbb{R}$ such that $y=t x$. Hence for $x \neq 0$
$f(y)-f(x)=f(t x)-f(x)=(t-1) f(x)=(y-x) \frac{f(x)}{x}$
This implies that f is continuous at every $x \neq 0$. ($\mathbf{4} \mathbf{p t}$.)
Finally, for $x=0$ it follows that $f(0)=f(0 \cdot 0)=0 \cdot f(0)=0$, and hence $f(y)-f(0)=f(y)=y f(1) .(2 \mathbf{p t}$.
Thus for any ϵ we can take $\delta=\frac{\epsilon}{|f(1)|}$, and $|y|<\delta$ will imply $|f(y)-f(0)|<\epsilon$, proving continuity at $x=0$. ($\mathbf{2} \mathbf{~ p t}$.)
(b) Take $x \neq 0$. Then

$$
\frac{f(t x)-f(x)}{t x-x}=(t-1) \frac{f(x)}{x}
$$

and it follows that $\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=\frac{f(x)}{x}$, proving differentiability at any $x \neq 0$ and $f^{\prime}(x)=\frac{f(x)}{x}$. (5 pt.)
For $x=0$ we obtain

$$
\frac{f(y)-f(0)}{y-0}=\frac{f(y)}{y}=f(1)
$$

for all $y \neq 0$, and thus $f^{\prime}(0)=f(1) .(\mathbf{2} \mathbf{p t}$.
3. Consider $h(x):=g(x)-f(x)$. Then $h(a) \geq 0$ and $h^{\prime}(x)>0$ for $x \in(a, b)$. Let $y \in(a, b]$. Then by the Mean Value theorem on the interval $[a, y]$ there exists $x \in(a, y)$ such that
$h(y)-h(a)=h^{\prime}(x)(y-a)$
Hence, $h(y)=h(a)+h^{\prime}(x)(y-a)>0$.
4. Write
$\left|g_{n}\left(f_{n}(x)\right)-g(f(x))\right| \leq\left|g_{n}\left(f_{n}(x)\right)-g\left(f_{n}(x)\right)\right|+\mid g\left(f_{n}(x)-g(f(x)) \mid\right.$
(2 pt.)
Let $\epsilon>0$. Since $g_{n} \rightarrow g$ uniformly there exists N_{1} such that for all $n \geq N_{1}$
$\left|g_{n}(y)-g(y)\right|<\frac{1}{2} \epsilon$,
for all y, and thus also for all $y=f_{n}(x)$. ($4 \mathbf{p t}$.)
By uniform convergence of g_{n} it follows that g is continuous, and thus uniformly continuous on $[c, d]$. Hence, there exists δ such that $|g(z)-g(y)|<\frac{1}{2} \epsilon$ for all y, z with $|z-y|<\delta$. (4 pt.)
Since $f_{n} \rightarrow f$ uniformly it follows that there exists N_{2} such that for $n \geq N_{2}$ we have $\left|f_{n}(x)-f(x)\right|<\delta$ for all x, and hence
$\left\lvert\, g\left(f_{n}(x)-g(f(x)) \left\lvert\,<\frac{1}{2} \epsilon\right.\right.\right.$
for all x. Now take $N:=\max \left\{N_{1}, N_{2}\right\}$, and use the first inequality. ($\mathbf{5} \mathbf{~ p t}$.)
5. (a) Since $\left|1+n x^{2}\right| \geq a n^{2}$, by the Weierstrass Test the series converges uniformly on each interval $[a, \infty)$.
(b)

$$
f_{n}^{\prime}(x)=\frac{n^{2}}{\left(1+n^{2} x\right)^{2}}
$$

Since $\left(1+n^{2} x\right)^{2} \geq a^{2} n^{4}$ it follows that $\frac{n^{2}}{\left(1+n^{2} x\right)^{2}} \leq \frac{1}{a^{2} n^{2}}$, and thus by the Weierstrass test the series $\sum f_{n}^{\prime}(x)$ converges uniformly on any interval $[a, \infty)$, and hence the series $\sum f_{n}(x)$ is differentiable.
6. (a) The function $F(x)=\int_{0}^{x} f$ is continuous. (3 pt.)

Hence by the Intermediate Value theorem on the interval $(0,1)$, and the fact that $F(0)=0, F(1)=2$, and $0<1<2$, there exists $x \in(0,1)$ such that $F(x)=1$. (6 pt.)
(b) Every subinterval of every partition P always contains an element of \mathbb{Q} and an element not in \mathbb{Q}. Hence for every partition P we have $U(f, P)=1$ while $L(f, P)=$ -1 . Hence f is not Riemann integrable. ($\mathbf{6} \mathbf{~ p t .)}$

