
Solutions Exam Analysis November 3, 2014

1. (a) Since A is bounded there exists M ′ such that |a| ≤M ′ for all a ∈ A. (1 pt.).
Let l ∈ L. Take ε = 1 then there exists a ∈ A such that |l − a| < 1. (2 pt.)
Hence |l| < |a|+ 1 ≤M ′ + 1 =: M , and thus L is bounded (2 pt.)

(b) Take ε > 0. Since c = supL there exists l ∈ L such that c− 1
2ε < l. (2 pt.)

Since l ∈ L there exists a ∈ A such that |l − a| < 1
2ε. (1 pt.)

Hence

|c− a| ≤ |c− l|+ |l − a| < 1

2
ε+

1

2
ε = ε

Hence c is a limit point of A. (2 pt.)

(c) Let ε > 0. Suppose there were infinitely many elements x ∈ A with x > c + ε.
Then there would exist a limit point l of A (and thus l ∈ L) with l ≥ c+ ε, which
contradicts c = supL. (3 pt.)
On the other hand, since c = supL there exists an l ∈ L such that c − 1

2ε < l.
Furthermore, since l ∈ L there exist infinitely many x ∈ A such that |l − x| < 1

2ε.
It follows that there exist infinitely many x ∈ A with c < l + 1

2ε < x + 1
2ε + 1

2ε,
showing that there are infinitely many x ∈ A with x > c− ε. (2 pt.).

2. (a) Consider x < y ∈ R and let x 6= 0. Then there exists t ∈ R such that y = tx.
Hence for x 6= 0

f(y)− f(x) = f(tx)− f(x) = (t− 1)f(x) = (y − x)
f(x)

x

This implies that f is continuous at every x 6= 0. (4 pt.)
Finally, for x = 0 it follows that f(0) = f(0 · 0) = 0 · f(0) = 0, and hence
f(y)− f(0) = f(y) = yf(1). (2 pt.)
Thus for any ε we can take δ = ε

|f(1)| , and |y| < δ will imply |f(y) − f(0)| < ε,

proving continuity at x = 0. (2 pt.)

(b) Take x 6= 0. Then

f(tx)− f(x)

tx− x
= (t− 1)

f(x)

x

and it follows that limy→x
f(y)−f(x)

y−x = f(x)
x , proving differentiability at any x 6= 0

and f ′(x) = f(x)
x . (5 pt.)

For x = 0 we obtain

f(y)− f(0)

y − 0
=
f(y)

y
= f(1)

for all y 6= 0, and thus f ′(0) = f(1). (2 pt.)

3. Consider h(x) := g(x)−f(x). Then h(a) ≥ 0 and h′(x) > 0 for x ∈ (a, b). Let y ∈ (a, b].
Then by the Mean Value theorem on the interval [a, y] there exists x ∈ (a, y) such that

h(y)− h(a) = h′(x)(y − a)

Hence, h(y) = h(a) + h′(x)(y − a) > 0.
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4. Write

|gn(fn(x))− g(f(x))| ≤ |gn(fn(x))− g(fn(x))|+ |g(fn(x)− g(f(x))|

(2 pt.)
Let ε > 0. Since gn → g uniformly there exists N1 such that for all n ≥ N1

|gn(y)− g(y)| < 1

2
ε,

for all y, and thus also for all y = fn(x). (4 pt.)
By uniform convergence of gn it follows that g is continuous, and thus uniformly con-
tinuous on [c, d]. Hence, there exists δ such that |g(z) − g(y)| < 1

2ε for all y, z with
|z − y| < δ. (4 pt.)
Since fn → f uniformly it follows that there exists N2 such that for n ≥ N2 we have
|fn(x)− f(x)| < δ for all x, and hence

|g(fn(x)− g(f(x))| < 1

2
ε

for all x. Now take N := max{N1, N2}, and use the first inequality. (5 pt.)

5. (a) Since |1 + nx2| ≥ an2, by the Weierstrass Test the series converges uniformly on
each interval [a,∞).

(b)

f ′n(x) =
n2

(1 + n2x)2

Since (1+n2x)2 ≥ a2n4 it follows that n2

(1+n2x)2
≤ 1

a2n2 , and thus by the Weierstrass

test the series
∑
f ′n(x) converges uniformly on any interval [a,∞), and hence the

series
∑
fn(x) is differentiable.

6. (a) The function F (x) =
∫ x
0 f is continuous. (3 pt.)

Hence by the Intermediate Value theorem on the interval (0, 1), and the fact that
F (0) = 0, F (1) = 2, and 0 < 1 < 2, there exists x ∈ (0, 1) such that F (x) = 1. (6
pt.)

(b) Every subinterval of every partition P always contains an element of Q and an
element not in Q. Hence for every partition P we have U(f, P ) = 1 while L(f, P ) =
−1. Hence f is not Riemann integrable. (6 pt.)
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