Solutions Exam Analysis November 3, 2014

- 1. (a) Since A is bounded there exists M' such that $|a| \leq M'$ for all $a \in A$. (1 pt.). Let $l \in L$. Take $\epsilon = 1$ then there exists $a \in A$ such that |l - a| < 1. (2 pt.) Hence $|l| < |a| + 1 \leq M' + 1 =: M$, and thus L is bounded (2 pt.)
 - (b) Take $\epsilon > 0$. Since $c = \sup L$ there exists $l \in L$ such that $c \frac{1}{2}\epsilon < l$. (2 pt.) Since $l \in L$ there exists $a \in A$ such that $|l - a| < \frac{1}{2}\epsilon$. (1 pt.) Hence

$$|c-a| \le |c-l| + |l-a| < \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon$$

Hence c is a limit point of A. (2 pt.)

- (c) Let ε > 0. Suppose there were infinitely many elements x ∈ A with x > c + ε. Then there would exist a limit point l of A (and thus l ∈ L) with l ≥ c + ε, which contradicts c = sup L. (3 pt.)
 On the other hand, since c = sup L there exists an l ∈ L such that c ½ε < l. Furthermore, since l ∈ L there exist infinitely many x ∈ A such that |l x| < ½ε. It follows that there exist infinitely many x ∈ A with c < l + ½ε < x + ½ε + ½ε, showing that there are infinitely many x ∈ A with x > c ε. (2 pt.).
- 2. (a) Consider $x < y \in \mathbb{R}$ and let $x \neq 0$. Then there exists $t \in \mathbb{R}$ such that y = tx. Hence for $x \neq 0$

$$f(y) - f(x) = f(tx) - f(x) = (t - 1)f(x) = (y - x)\frac{f(x)}{x}$$

This implies that f is continuous at every $x \neq 0$. (4 pt.) Finally, for x = 0 it follows that $f(0) = f(0 \cdot 0) = 0 \cdot f(0) = 0$, and hence f(y) - f(0) = f(y) = yf(1). (2 pt.) Thus for any ϵ we can take $\delta = \frac{\epsilon}{|f(1)|}$, and $|y| < \delta$ will imply $|f(y) - f(0)| < \epsilon$, proving continuity at x = 0. (2 pt.)

(b) Take $x \neq 0$. Then

$$\frac{f(tx) - f(x)}{tx - x} = (t - 1)\frac{f(x)}{x}$$

and it follows that $\lim_{y\to x} \frac{f(y)-f(x)}{y-x} = \frac{f(x)}{x}$, proving differentiability at any $x \neq 0$ and $f'(x) = \frac{f(x)}{x}$. (5 pt.) For x = 0 we obtain $\frac{f(y) - f(0)}{y - 0} = \frac{f(y)}{y} = f(1)$

for all $y \neq 0$, and thus f'(0) = f(1). (2 pt.)

3. Consider h(x) := g(x) - f(x). Then $h(a) \ge 0$ and h'(x) > 0 for $x \in (a, b)$. Let $y \in (a, b]$. Then by the Mean Value theorem on the interval [a, y] there exists $x \in (a, y)$ such that

$$h(y) - h(a) = h'(x)(y - a)$$

Hence, h(y) = h(a) + h'(x)(y - a) > 0.

4. Write

$$|g_n(f_n(x)) - g(f(x))| \le |g_n(f_n(x)) - g(f_n(x))| + |g(f_n(x) - g(f(x)))|$$

(2 pt.)

Let $\epsilon > 0$. Since $g_n \to g$ uniformly there exists N_1 such that for all $n \ge N_1$

$$|g_n(y) - g(y)| < \frac{1}{2}\epsilon,$$

for all y, and thus also for all $y = f_n(x)$. (4 pt.)

By uniform convergence of g_n it follows that g is continuous, and thus uniformly continuous on [c,d]. Hence, there exists δ such that $|g(z) - g(y)| < \frac{1}{2}\epsilon$ for all y, z with $|z-y| < \delta$. (4 pt.)

Since $f_n \to f$ uniformly it follows that there exists N_2 such that for $n \ge N_2$ we have $|f_n(x) - f(x)| < \delta$ for all x, and hence

$$|g(f_n(x) - g(f(x))| < \frac{1}{2}\epsilon$$

for all x. Now take $N := \max\{N_1, N_2\}$, and use the first inequality. (5 pt.)

5. (a) Since $|1 + nx^2| \ge an^2$, by the Weierstrass Test the series converges uniformly on each interval $[a, \infty)$.

$$f'_n(x) = \frac{n^2}{(1+n^2x)^2}$$

Since $(1+n^2x)^2 \ge a^2n^4$ it follows that $\frac{n^2}{(1+n^2x)^2} \le \frac{1}{a^2n^2}$, and thus by the Weierstrass test the series $\sum f'_n(x)$ converges uniformly on any interval $[a, \infty)$, and hence the series $\sum f_n(x)$ is differentiable.

- 6. (a) The function $F(x) = \int_0^x f$ is continuous. (3 pt.) Hence by the Intermediate Value theorem on the interval (0, 1), and the fact that F(0) = 0, F(1) = 2, and 0 < 1 < 2, there exists $x \in (0, 1)$ such that F(x) = 1. (6 pt.)
 - (b) Every subinterval of every partition P always contains an element of \mathbb{Q} and an element not in \mathbb{Q} . Hence for every partition P we have U(f, P) = 1 while L(f, P) = -1. Hence f is not Riemann integrable. (6 pt.)