Solutions Exam Analysis November 3, 2014

1. (a) Since A is bounded there exists M’ such that |a|] < M’ for all a € A. (1 pt.).
Let I € L. Take ¢ = 1 then there exists a € A such that |l —a| < 1. (2 pt.)
Hence || < |a|+1 < M’'+1=: M, and thus L is bounded (2 pt.)
(b) Take € > 0. Since ¢ = sup L there exists [ € L such that ¢ — e < . (2 pt.)
Since | € L there exists a € A such that [l —a| < Ze. (1 pt.)
Hence

e—al <le—1+ i —a] < et te=
C al =~ |C a 26 26—6

Hence c is a limit point of A. (2 pt.)

(c) Let € > 0. Suppose there were infinitely many elements x € A with z > ¢ + e.

Then there would exist a limit point [ of A (and thus [ € L) with [ > ¢+ €, which
contradicts ¢ =sup L. (3 pt.)
On the other hand, since ¢ = sup L there exists an [ € L such that ¢ — %e <.
Furthermore, since [ € L there exist infinitely many x € A such that || — z| < %e.
It follows that there exist infinitely many x € A with ¢ < [ + %6 < x4+ %e + %e,
showing that there are infinitely many x € A with x > ¢ —e. (2 pt.).

2. (a) Consider z < y € R and let  # 0. Then there exists ¢ € R such that y = tx.
Hence for x # 0
F(0) — (@) = S(t2) ~ @) = (1= V(@) = (y - ) T2

x

This implies that f is continuous at every = # 0. (4 pt.)
Finally, for x = 0 it follows that f(0) = f(0-0) = 0. f(0) = 0, and hence
f(y) = £(0) = fy) = yf(1). (2 pt.)

Thus for any € we can take § = HOIL

o> and |yl < & will imply |f(y) — f(0)] <€,
proving continuity at z = 0. (2 pt.)
(b) Take x # 0. Then
fliz) = f@) @)
tr —x T

and it follows that lim, ., w = @, proving differentiability at any =z # 0
and f'(z) = L& (5 pt.)

For z = 0 we obtain

fly) —f0) _ fly)
0 = = f(1)

for all y # 0, and thus f/(0) = f(1). (2 pt.)

3. Counsider h(x) := g(z) — f(x). Then h(a) > 0 and h'(z) > 0 for = € (a,b). Let y € (a, b].
Then by the Mean Value theorem on the interval [a, y] there exists x € (a,y) such that

h(y) — h(a) = K (z)(y — a)
Hence, h(y) = h(a) + 1/ (z)(y — a) > 0.




4. Write

5.

|9 (fn(2)) = 9(f(@))| < lgn(fn(2)) — g(fn ()] + |g(fn(x) — 9(f (2))]

(2 pt.)
Let € > 0. Since g, — ¢ uniformly there exists N; such that for all n > N;

1

l9n(y) = 9(y)l < e,

for all y, and thus also for all y = f,,(z). (4 pt.)

By uniform convergence of g, it follows that g is continuous, and thus uniformly con-
tinuous on [c,d]. Hence, there exists § such that |g(2) — g(y)| < e for all y,z with
|z —y| < 4. (4 pt.)

Since f, — f uniformly it follows that there exists Ny such that for n > N we have

|fn(z) — f(x)| < ¢ for all x, and hence

1
l9(fu(z) = g(f(2))] < e
for all z. Now take N := max{Ny, N2}, and use the first inequality. (5 pt.)

(a) Since |1 4 nx?| > an?, by the Weierstrass Test the series converges uniformly on
each interval [a, 00).

(b)

n2

fo(x) = m

Since (1+n2x)? > a?n? it follows that ﬁ < ﬁ, and thus by the Weierstrass
test the series > f! (x) converges uniformly on any interval [a,o0), and hence the
series Y fn(x) is differentiable.

(a) The function F(z) = [; f is continuous. (3 pt.)
Hence by the Intermediate Value theorem on the interval (0,1), and the fact that
F(0)=0, F(1) =2, and 0 < 1 < 2, there exists « € (0,1) such that F(z) =1. (6
pt.)

(b) Every subinterval of every partition P always contains an element of Q and an
element not in Q. Hence for every partition P we have U(f, P) = 1 while L(f, P) =
—1. Hence f is not Riemann integrable. (6 pt.)





